A discrete log-Sobolev inequality under a Bakry-Emery type condition
نویسنده
چکیده
We consider probability mass functions V supported on the positive integers using arguments introduced by Caputo, Dai Pra and Posta, based on a Bakry–Émery condition for a Markov birth and death operator with invariant measure V . Under this condition, we prove a new modified logarithmic Sobolev inequality, generalizing and strengthening results of Wu, Bobkov and Ledoux, and Caputo, Dai Pra and Posta. We show how this inequality implies results including concentration of measure and hypercontractivity, and discuss how it may extend to higher dimensions.
منابع مشابه
Logarithmic Sobolev inequality for diffusion semigroups
Through the main example of the Ornstein-Uhlenbeck semigroup, the Bakry-Emery criterion is presented as a main tool to get functional inequalities as Poincaré or logarithmic Sobolev inequalities. Moreover an alternative method using the optimal mass transportation, is also given to obtain the logarithmic Sobolev inequality. Mathematics Subject Classification (2000) : Primary 35B40, 35K10, 60J60.
متن کاملA note on Talagrand’s transportation inequality and logarithmic Sobolev inequality
We give by simple arguments sufficient conditions, so called Lyapunov conditions, for Talagrand’s transportation information inequality and for the logarithmic Sobolev inequality. Those sufficient conditions work even in the case where the Bakry-Emery curvature is not lower bounded. Several new examples are provided.
متن کاملOn the role of Convexity in Functional and Isoperimetric Inequalities
This is a continuation of our previous work [41]. It is well known that various isoperimetric inequalities imply their functional “counterparts”, but in general this is not an equivalence. We show that under certain convexity assumptions (e.g. for log-concave probability measures in Euclidean space), the latter implication can in fact be reversed for very general inequalities, generalizing a re...
متن کاملCurvature and transport inequalities for Markov chains in discrete spaces
We study various transport-information inequalities under three di erent notions of Ricci curvature in the discrete setting: the curvature-dimension condition of Bakry and Émery [4], the exponential curvature-dimension condition of Bauer et al. [6] and the coarse Ricci curvature of Ollivier [38]. We prove that under a curvature-dimension condition or coarse Ricci curvature condition, an L1 tran...
متن کاملSharp Geometric and Functional Inequalities in Metric Measure Spaces with Lower Ricci Curvature Bounds
Abstract. For metric measure spaces verifying the reduced curvature-dimension condition CD∗(K,N) we prove a series of sharp functional inequalities under the additional assumption of essentially nonbranching. Examples of spaces entering this framework are (weighted) Riemannian manifolds satisfying lower Ricci curvature bounds and their measured Gromov Hausdorff limits, Alexandrov spaces satisfy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1507.06268 شماره
صفحات -
تاریخ انتشار 2015